Generating Equivalent Numerical Expressions Module 9 Page 285 Review

GENERATING EQUIVALENT ALGEBRAIC EXPRESSIONS

An algebraic expression is a mathematical sentence involving constants (any real number), variables and the algebraic operations (add-on, subtraction, multiplication, partition and exponentiation by an exponent that is a rational number).

Let us consider the algebraic expression which is given below.

7(x - three) + 2(2x - five) - 3(x - 5)   --------- (1)

To generate equivalent algebraic expression, we accept to simplify.

Let united states of america simplify the expression as given below.

Pace i :

Distributing the number which is exterior the parenthesis with inner terms.

 =  7x - 21 + 4x - 10 - 3x + xv

Stride two :

Combine the similar terms

  =  7x + 4x - 3x - 21 - 10 + 15

= 11x - 3x - 31 + 15

= 8x - 16

Hence, equivalent algebraic expression to (1) is (8x - sixteen)

Practice Problems

Trouble 1 :

Write the equivalent algebraic expression for the function defined by

f(10)  =  (xtwo - 5x + 6) / (x - iii)

Solution :

Problem 2 :

Write the equivalent algebraic expression for the expression given below.

4x - (2 + 4x) - ii (x - i) - 8 (ten -three)

Solution:

  =  4x - (2 + 4x) - 2 (x - i) - 8 (x -iii)

=  4x - 2 - 4x - 2x + 2 - 8x + 24

=  4x - 4x - 2x - 8x - 2 + 2 + 24

=  -10x + 24

Problem 3 :

Write the equivalent algebraic expression for the function defined by

f(x)  = (5x + 20) / (7x + 28)

Solution:


Factoring the numerator and denominator of the given rational function, we become

f(x)  =5(x + 4) / 7(x + 4)

Getting rid of  the common factor (x + 4) at both numerator and denominator, we get

f(x)  =  5 / vii

Problem four :

Write the equivalent algebraic expression for the expression given below.

(2x - 7)/5 + (x + 9)/xv - (2x -2)/5

Solution :

=  (2 x - 7)/v + (x + 9 )/15 - (two x - 2 )/5

Now we are going to combine the like terms

Problem 5 :

Write the equivalent algebraic expression for the expression given below.

(3x + 41) / 2 + (x - 3 ) / 5 - (9 - 2x) / half dozen

Solution :

Now we are going to distribute the numbers which is out side the  parenthesis to the inner terms.Then combine the like terms

Problem 6 :

Write the equivalent algebraic expression for the function defined by

f(x)  =   (6x 2  - 54) / (x two  + 7x + 12)

Solution:

Factoring the numerator and denominator of the given rational function, we get

f(x)  =   6( ten 2  - nine) / (10 + 3)(x + four)

f(x)  =   half dozen( 10 2  - 3 ii ) / (x + 3)(ten + 4)

f(10)  =   half-dozen(x + 3)(x - iii) / (x + 3)(x + four)

Getting rid of  the common factor (ten + 3) at both numerator and denominator, we get

f(x)  =  6(x - 3) / (ten + 4)

Problem 7 :

Write the equivalent algebraic expression for the function defined past

f(x)  =   (64a 3  + 125b 3 ) / (4a2b + 5ab2 )

Solution:

f(x)  =   (64 a 3  + 125b iii ) / (4aiib + 5ab2 )

f(x)  =   (43 a 3  + 5 3 b 3 ) / (4a2b + 5abtwo)

f(x)  =   [(4 a) iii  + (5 b) 3 ] / (4a2b + 5abtwo)

Factoring the numerator and denominator of the given rational office, we get

f(x)  =   [4a + 5b][(4a)2 - 4a.5b + (5b ) ii ]  / ab(4a + 5b)

f(x)  =   [(4a ) 2  - 4a.5b + (5b ) 2 ]  / ab

f(ten)  =   [16a ii  - 20ab + 25b 2 ]  / ab

Getting rid of  the mutual factor (4a + 5b) at both numerator and denominator, we get

f(x)  =   [(4a ) 2  - 4a.5b + (5b ) ii ]  / ab

f(x)  =   [16a 2  - 20ab + 25b two ]  / ab

Problem 8 :

Write the equivalent algebraic expression for the function defined past

f(10)  =   (x2  + 7x + ten ) / ( 10 2  -  iv )

Solution:

f(x)  =   ( x 2  + 7x + x ) / ( 10 two  -  4 )

f(x)  =   ( 10 ii  + 7x + 10 ) / ( x 2  - ii 2 )

Factoring the numerator and denominator of the given rational function, we go

f(ten)  =   (ten + 2)(x + 5)  / (x + 2)(x - ii)

Getting rid of  the common factor (x + 5) at both numerator and denominator, we get

f(x)  =   (x + 5)  / (x - 2)

Apart from stuff given higher up, if you demand whatever other stuff in math, please use our google custom search hither.

Kindly mail your feedback tov4formath@gmail.com

We e'er appreciate your feedback.

© All rights reserved. onlinemath4all.com

rodrigueztherstre.blogspot.com

Source: https://www.onlinemath4all.com/generating-equivalent-algebraic-expressions.html

0 Response to "Generating Equivalent Numerical Expressions Module 9 Page 285 Review"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel